
 

  

USING IR SENSORS IN 

ALARM SYSTEMS 
LESSON PLAN 1 

This project has been funded with support from the European Commission. 

This communication reflects the views only of the author, and the Commission cannot be held responsible for 
any use which may be made of the information contained therein. 

 



 

2019-1-FR01-KA201-062281 

 
 

Table of Contents 
1. Using IR sensors in alarm systems .......................................................................... 2 

1.1 General information .............................................................................................. 2 

1.1.1 Short description ............................................................................................... 2 

1.1.2 Learning objectives ........................................................................................... 2 

1.1.3 Links to curriculum ............................................................................................ 2 

1.1.4 Materials required ............................................................................................. 3 

1.1.5 Duration ............................................................................................................ 3 

1.2 Lesson plan .......................................................................................................... 4 

1.2.1 Introduction ....................................................................................................... 4 

1.2.2 Preparation ....................................................................................................... 4 

1.2.3 Investigation ...................................................................................................... 9 

1.2.4 Conclusion ...................................................................................................... 10 

1.2.5 Follow-up exercise (optional) .......................................................................... 10 

1.3 References or Resources ................................................................................... 10 

 



 

2019-1-FR01-KA201-062281 

 
 

1. Using IR sensors in alarm systems 

1.1 General information 

1.1.1 Short description 
 

This lesson introduces the use of TCRT5000 reflective optical sensor with transistor output 

to design a simple circuit that will act as an alarm for windows that might have been 

opened by an unauthorised person. The positioning of such a sensor can be introduced 

in real set up next to the window frame due to operating range of the sensor that is from 

0.2 mm to 15 mm. 

1.1.2 Learning objectives 
 

The main learning objectives of this lesson plan or educational activity are: 

• Concept and content understanding of hardware to set up a code in Scratch.  

• Familiarising with hands on console building activities to enhance experimentation 

in STEM related subjects. 

• Familiarizing with readings from GPIO pins. 

• Understanding the coding steps in Scratch. 

• Designing coding in Scratch. 

• Using sensors, infrared emitter, phototransistor and other elements to experiment 

with the STEMKIT console.  

• Performing coding on a STEMKIT console on the example of IR sensors in alarm 

systems. 

• Performing basic assembly of sensors on a breadboard.  

• Experimenting with connecting sensors to the Raspberry Pi and STEMKIT 

console. 

• Autonomy in the creation of a simple circuit that can serve as a demonstration of 

a security installation in a building. 

• Autonomy in introducing the concepts of coding in the classroom environment. 

1.1.3 Links to curriculum 
 

The domains, subdomains, subjects/topics that this lesson plan can be linked to are: 



 

2019-1-FR01-KA201-062281 

 
 
Science (Physics/Chemistry/Biology/Geology): voltage, power, circuits, alarm triggers, 

scientific method, investigation, experimentation, analysis and interpretation of results  

Computer Science/Informatics: processing unit and peripherals, interfaces, programming 

language and main structures, coding 

Technology: electronics, open-source hardware and software, sensors, digital signal, 

single board computers, console 

1.1.4 Materials required 
 

In order to carry out this lesson plan, the STEMKIT console with Raspberry Pi is needed 

along with the following elements: 

▪ 3 x TCRT5000 sensors 

▪ 1 x buzzer with generator 

▪ 2 x Female-to-Female jumper wires 

▪ 5 x Male-to-Female jumper wires 

▪ 3 x 10kΩ resistors 

▪ 3 x 330Ω resistors 

▪ 1 x breadboard 

 

1.1.5 Duration 
 

The duration of this lesson plan is estimated to be about 45-60 mins, i.e., one classroom 

hour.   



 

2019-1-FR01-KA201-062281 

 
 

1.2 Lesson plan 
 

The lesson plan is divided in four phases, which are introduction, preparation, investigation 

and conclusion. As a follow-up there is also an optional exercise at the end. 

1.2.1 Introduction 
 

The TCRT5000 is a sensor that is composed of two elements in one enclosure. The 

emitter emits the wavelength of 950 nm that is then to be received by the phototransistor 

working as a detector. The closer the object to the sensor is, the greater reading of the 

voltage from the phototransistor is going to be. As Raspberry Pi offers GPIO pins, this 

reading can then be followed to check whether the obstacle (the window frame) is close 

to the sensor and as a result if the window is closed. 

Within this lesson Scratch will be used to demonstrate the sample code that can be used 

to track this simple circuit. 

1.2.2 Preparation 
 

The preparation phase requires to perform a basic assembly of the sensors on a 

breadboard and setting up the code in Scratch. Let us start with the breadboard first. 

Place three TCRT5000 sensors on an empty breadboard by connecting the emitter of the 

phototransistor and cathode of the infrared emitter to the ground rail. After that, connect 

the collector of the phototransistor using a 10kΩ resistor to the positive rail on a 

breadboard. Likewise, connect the anode of the infrared emitter to the positive rail using 

a 330Ω resistor. Repeat it for the remaining two TCRT5000 sensors. 

Now it is time to connect the sensors to the Raspberry Pi. Connect the jumper wire of an 

appropriate length to each TCRT5000 sensor. It should connect to the rail where the 

collector of the phototransistor is connected and powered by a positive voltage rail using 

a 10kΩ resistor. At this stage there should be three jumper wires – one per each 

TCRT5000 sensor. These jumper wires should be connected to GPIO pins on Raspberry 

Pi marked as 35, 33 and 31 (or in GPIO: 19, 13 and 6). Now it is also the time to connect 

the buzzer directly to Raspberry Pi. You can do so by attaching the GND pin of the buzzer 

to pin 39 and its positive wire to pin 38 (or GPIO: 26). Finally, the breadboard needs to 

receive the power from Raspberry Pi. For this purpose, you can use +5V rail from 

Raspberry Pi (pin 4) and GND (pin 6). Use jumper wires to power up the breadboard. The 

hardware setup is done, so now we can move to Scratch. 



 

2019-1-FR01-KA201-062281 

 
 
Inside Scratch, you can select any backdrop that has at least three windows visible. For 

this lesson we are going to use urban1 backdrop. Set it for the entire scene. At the same 

time, you need to add three objects that will change their costumes once the alarm is 

triggered. Here the suggestion is to use a sprite that combines button4-a and button5-b. 

The code will change the costumes based on the reading from the sensors. As you need 

to have three sprites (one per each window), please duplicate them to have the following 

setup (the middle sprite has the other costume active to show the difference): 

 

Image 1. Scratch environment with all required elements positioned on the screen 

Source: STEMKIT4Schools project 

Before we go to the main code, let us work on the three sprites that are placed on the 

windows. 

To simulate the alarm, we are going to use Scratch’s broadcasting messages to react 

accordingly to the readings from the sensors. When you switch over to the Scripts tab, 

you will need to add two reactions for the incoming messages. Let us assume that for the 

first sensor we will emit messages window1-open and window1-closed. When the 

message received is window1-open, then we need to trigger the alarm and change the 

costume from a green checkmark to a red cross. Similarly, when the window is closed, we 

need to have the green checkmark costume again. The sample code is presented below: 



 

2019-1-FR01-KA201-062281 

 
 

 

Image 2. Script for sprites reacting to the readings from GPIO pins 

Source: STEMKIT4Schools project 

 

Replicate this setup for the remaining two sprites placed over the windows and remember 

to change the titles of the messages (window2-open, window2-closed, window3-open, 

window3-closed). 

The main code is where it all gets interesting. Once you select the cat, switch over to the 

Scripts tab and start adding the code. The first thing we would like to set up is let Scratch 

know that GPIO pins 19, 13 and 6 should be read as input pins. 

 

Image 3. Beginning of the code – setting relevant GPIO pins as input ones 

Source: STEMKIT4Schools project 

 

Next, you can add some messages before we launch the main code. 

 

Image 4. Introduction messages executed by the code 

Source: STEMKIT4Schools project 

 

In the next step, we are going to add a repeat loop that will do 30 cycles, understood as 

“checks” of the sensors. 



 

2019-1-FR01-KA201-062281 

 
 

 

Image 5. Main repeat loop 

Source: STEMKIT4Schools project 

 

Within each loop, we are interested to reach all three sensors to see if the windows are 

closed or not. The structure is very simple, as we can check with an if statement if the 

reading from respective GPIO pins is high and act accordingly. Below you will find an 

example for GPIO pin number 19. 

 

Image 6. An if statement reading the GPIO value and broadcasting messages 

Source: STEMKIT4Schools project 

 

Note that the only action we are taking here is to emit either window1-open or window1-

closed message based on the value of GPIO pin number 19. Similar if blocks should be 

added for the remaining GPIO: 13 and 6. Again, do not forget to change the number of 

GPIO pin and also the message to be broadcasted! 

In the next step we also want to control our buzzer. The condition here is that if all windows 

are closed, the alarm is silent. When at least one window is opened, we will emit the alarm 

sound and will also let the cat say Alarm! to have also a visual notice. For this, we will use 

an if statement with three conditions combined by a logical or instruction. 



 

2019-1-FR01-KA201-062281 

 
 

 

Image 7. An if statement to trigger the alarm if needed 

Source: STEMKIT4Schools project 

 

Just before completing the current loop, we will pause the execution for 1 second. Doing 

so defines the frequency of our checks to be executed once per each second. 

 

Image 8. Pause execution of the code for 1 second just before leaving the loop 

Source: STEMKIT4Schools project 

 

Finally, as we do not want to have the buzzer emitting sound after we finish all our code, 

right after the repeat loop we need to add the instruction to set the GPIO pin number 26 

(the one with the buzzer) to remain in the low state (which means no sound). 

 

Image 9. Setting buzzer’s GPIO to low after the main loop 

Source: STEMKIT4Schools project 

 

The final result defining our code is presented below. 



 

2019-1-FR01-KA201-062281 

 
 

 

Image 10. Main code for the sample circuit 

Source: STEMKIT4Schools project 

1.2.3 Investigation 
 

We can finally run our code! Please follow the next subtasks to learn more about this 

example. To avoid false readings, make sure that all the elements used to build the circuit 

(jumper wires or resistors) do not cover any of the TCRT5000 sensors. 

Collection of data 

For the first run, make sure that the sensors are not covered, or, in other words, that there 

are no elements that would reflect the emitted infrared beam and therefore turn the GPIO 



 

2019-1-FR01-KA201-062281 

 
 
pins into high state. Within the next run, try to cover one sensor with your finger or any 

other element. Try to observe the behaviour when all three sensors are covered, 

simulating the situation where all windows are closed. 

Analysis of data 

Based on the data observed, are you able to tell if the distance of the obstacle from the 

sensor is in line with the expected working range? Try to notice how close the obstacle 

needs to be above the sensor to make it turn the GPIO pin into high state. Is the behaviour 

of the code consistent with the expectations? Do the sprites on the screen change in 

response to specific sensors being covered/uncovered? Does the alarm go off when at 

least one window is opened and does the cat say Alarm! in this situation? 

Presentation of results 

At this stage we are invited to share the results of our work with other groups. Has 

everything worked fine? Were there any difficulties in setting up the entire circuit? Were 

there any changes introduced to the code? If so, what kind of? Were the readings on how 

close the obstacle needs to be to turn the sensor’s GPIO port into high state consistent 

for all the sensors? Was it also the same case in other groups? 

1.2.4 Conclusion 
 

We have succeeded in creating a very simple circuit that can serve as a demonstration of 

a security installation in the building. At this stage we can exchange ideas with other 

groups, what was done in which way and in what order and to clarify any questions that 

might appear. 

1.2.5 Follow-up exercise (optional) 
 

The follow-up exercise can include a multimeter, measuring the voltage from the sensors 

in live mode as the obstacle is approaching. This way we will be able to tell at what voltage 

the Raspberry Pi considers the input to be in the high state. We can also try to change the 

main loop used in the code from repeat to forever. 

1.3 References or Resources 
 

Resource related to this lesson plan: https://www.vishay.com/docs/83760/tcrt5000.pdf  

https://www.vishay.com/docs/83760/tcrt5000.pdf

